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Abstract: A simple and effective method, SIFT (spectroscopy by integration of frequency and time domain
information), is introduced for processing nonuniformly sampled multidimensional NMR data. Applying the
computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and
medical imaging, SIFT supplements data at nonuniform points in the time domain with the information
carried by known “dark” points (i.e., empty regions) in the frequency domain. We demonstrate that this
rapid integration not only removes the severe pseudonoise characteristic of the Fourier transforms of
nonuniformly sampled data, but also provides a robust procedure for using frequency information to replace
time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments,
and the former can be used to take advantage of the ability of nonuniformly sampled data to minimize
trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing
2D and 3D data sets takes about 0.1 and 2 min, respectively, on a personal computer. With these several
attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and
accurate processing of multidimensional NMR data.

Introduction

With increasing use of multidimensional NMR experiments
to resolve the signals of large molecules, there has been growing
interest in improving the efficiency of data acquisition.1,2 The
novel approach described here joins the following two
observations.

(a) Two very different experimental regimes have similar
needs. In the sampling-limited situation, commonly encountered
in solution NMR, more points are required for resolution than
for signal-to-noise (S/N). Here, one wants to take only as many
points late in the free induction decay (FID) as needed for
resolution. On the other hand, in the sensitivity-limited situation,
commonly encountered in solid-state NMR, more scans are
required for S/N than for resolution. Here, one wants to take as
many points as possible early in the FID, where the signal is
stronger. Thus, nonuniform sampling (NUS), with more points
taken early in the FID and just enough taken late in the FID, is
desirable in both cases and has received a great deal of attention.
The problem is how to process NUS data without sacrificing
the efficiency of the fast Fourier transform (FFT) and without
introducing biasing models and assumptions.

(b) FT-NMR made a bargain with the devil in effectively
sampling all of frequency space equally when much of it is
empty of signals (i.e., “dark”). However, because there is a linear
relationship between signals in the time and frequency domains,

known information in the frequency domain can in principle
replace information from the time domain. Moreover, whereas
some schemes for processing NMR data obtained by NUS make
use of spectral darkness in an implicit, laborious, and model-
dependent fashion, it should be possible to use the darkness in
an explicit, efficient, and model-free manner.

Previously reported approaches to NUS include reduced
dimensionality (RD)3,4 or GFT,5-7 projection reconstruction,8-10

covariance NMR,11-14 filter diagonalization,15 MaxEnt,16-19

multidimension decomposition (MDD),20-24 and nonuniform
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Fourier transformation (NU-FT).25-30 A common issue is the
severe pseudonoise that corresponds to the Fourier transform
of steps in the sampling function. In this regard, statistically
random NUS seems generally preferable over the radial NUS
of the type used for RD because incoherence in the sampling
pattern helps to suppress the pseudonoise.25,31 Therefore,
increasing attention has been drawn to MaxEnt, MDD, and NU-
FT, which can all process random NUS.

Of these approaches, the conceptually most straightforward
is NU-FT, which simply Fourier transforms NUS data without
using FFT. However, the residual pseudonoise in the resulting
spectrum is untreated and often requires a time-consuming
postprocessing cleaning procedure in the frequency domain.27

MaxEnt and MDD can actively reduce the pseudonoise, but they
also do so at significant computational expense, especially in
the case of MDD. Moreover, the quality of the reconstruction
in each case is dependent on several adjustable parameters, with
susceptibility to artifacts.18,20 A more efficient and model-
independent procedure is highly desirable.

In general, NMR spectra are naturally relatively “dark”,
meaning that they include regions where no signals arise (as
compared, for example, to an image of an object that yields a
continuum of pixel intensities). In fact, MDD and MaxEnt both
rely on this darkness.20,32 The darkness in 1D NMR spectra
derives from the discrete nature of chemical groups. Additional
dimensions generally increase the darkness, and this is especially
so for some short-range correlation experiments, due to the
intrinsic correlations between the chemical shifts of directly
bonded nuclei. For example, in a 2D 1H-13C HSQC spectrum,
the signals tend to cluster on a diagonal, leaving large triangular
regions of spectrum bare. Also, in magic-angle spinning solid-
state NMR experiments, the dwell time for the indirect dimen-
sion is often rotor-synchronized (to simplify interpretation and
gain sensitivity by folding the spinning sidebands onto the
corresponding main peak), resulting in a bandwidth that often
exceeds the extent of the signal distribution. Known zeroes in
the frequency domain constitute concrete and unambiguous

spectral information. Furthermore, due to the linear relationship
between time and frequency domain intensities, every frequency
point with known intensity obviates measurement at one time
point. Clearly, it is desirable to have a processing scheme that
makes systematic use of the information content in known
spectral darkness.

In this context, the approach of Gerchberg and Papoulis is
promising.33,34 Extensively used in picture processing and
medical imaging,35-37 the Gerchberg-Papoulis (G-P) algorithm
iterates alternating Fourier transforms and inverse Fourier
transforms, with frequency domain priors (dark points) and time
domain data each reimposed in each cycle until convergence is
achieved. In this way, information across the domains is
integrated without any biasing model or parameters, and the
frequency dark points can replace an equal number of time data
omitted by NUS (or simply deleted due to corruption by probe-
arcing, etc.). Furthermore, because the time data can be defined
on a regular grid, FFT algorithms can be used to enable fast
processing. All that is needed is to identify the frequency dark
points in advance.

There are various ways to locate the frequency dark points
before actually acquiring a full nD data set. The most straight-
forward and comprehensive is prior experience with similar
types of spectra for similar samples. For novel experiments and/
or samples, a less comprehensive set of zeroes can be identified
conservatively in two ways. The simpler is to scout for zeroes
in a low resolution nD version of the same experiment. An
alternative is to locate empty regions in the (n-1)D spectra
corresponding to the projections in each of the indirect dimen-
sions in the full nD experiment. Of course, it is also possible to
combine the two approaches, with low-resolution (n-1)D
spectra. Dark regions can also be added to spectra by expanding
the spectral width. As demonstrated below, even in the least
favorable case of an otherwise bright spectrum, the cost of
oversampling is more than repaid by the added dark points
because the flexibility gained in the choice of time points can
improve the S/N without degrading resolution.

Instead of locating the dark points on the basis of knowledge
provided by experience or scout data or oversampling, dark
points can also be assumed below a user-defined threshold.38

Here, the definition of the “smallest meaningful spectral
intensity” becomes subjective, and caution is required in
restoring a spectrum with small signals (e.g., in a NOESY
experiment). Moreover, because one does not know the number
of dark points in advance, it is difficult to rationally plan data
acquisition. The benefits and drawbacks of using known versus
assumed dark points in processing spectra are demonstrated
below.

This Article describes the first application of the G-P type
algorithm to combine time and frequency information in
multidimensional NMR. We call the method “spectroscopy by
integration of frequency and time domain information” (SIFT).
To show the power of frequency dark points, we choose the
worst case of a bright spectrum in which the only frequency
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dark points are those produced by oversampling as mentioned
above. Specifically, we use a 2D 1H-15N HSQC spectrum of a
uniformly 15N labeled 56-residue protein, GB1. We also use
synthetic 1D data for further tests. SIFT is shown to be highly
user-friendly. It is also rapid, typically converging in just 0.1
and 2 min for 2D and 3D data sets, respectively. In addition,
SIFT has no adjustable parameters and is resistant to misuse,
with tell-tale behavior when the intensity at a given frequency
is mistakenly set to zero. Furthermore, due to the linearity of
the procedure, SIFT quantifies spectral intensities very well.
Finally, SIFT is also robust in that the results degrade slowly
and smoothly when the number of dark frequency points is not
enough to fully replace the omitted time points. These favorable
features will make NUS, for efficient acquisition of multidi-
mensional NMR data, accessible to nonexpert users. To facilitate
adoption, a suite of MATLAB macros implementing SIFT for
processing 2D and 3D data sets is available at http://www.
brandeis.edu/∼herzfeld/SIFT.

Methods

SIFT Procedure. The SIFT procedure is described below for a
2D experiment (i.e., one indirect dimension). However, generaliza-
tion to higher dimensions is straightforward. The heart of SIFTing
is the cycle shown in Figure 1. A uniform grid of time points is
initially filled with zeroes, corresponding to f̃0(t). Zeroes are
reasonable starting values due to the oscillating nature of the FID
around zero. In the first step of the cycle (top of Figure 1), f0(t) is
obtained by replacing points in f̃0(t) according to the experimentally
acquired time data. FFT of f0(t) then generates the frequency
spectrum F0(ω). At this point, the S/N ratio is calculated for several
F1 slices containing NMR signals to provide a metric for
convergence of the process. In the third step of the cycle (bottom
of Figure 1), F̃0(ω) is obtained by replacing points in F0(ω) with
zeroes according to known dark frequencies in the spectrum. Finally,
inverse FFT of F̃0(ω) produces f̃1(t), and the cycle can begin anew.

Our implementation of this cycle in MATLAB requires input of
files that contain (1) the sampling schedule, (2) the corresponding
time domain NUS data, and (3) specification of the dark frequency
points (or, for application of the thresholding method, a threshold
level below which all spectral intensities will be assumed to be
zero). The number of cycles can either be preset or the macro can
be made to automatically terminate when the S/N does not improve
between cycles more than a predefined small amount. The final
SIFTed FID, fn(t), is Fourier transformed and phased as usual, and
some additional macros are provided for displaying and inspecting
1D and 2D slices. The spectrum can also be output to Sparky format
for further inspection.

Data Sets. To form test data sets with varying distributions of
t1 samples, data were extracted from a large, uniform master data
set by eliminating t2-FIDs along t1. In the full master data set, 128
t1 samples were recorded at 250 µs intervals (SW ) 4 kHz),
producing the spectrum shown in Figure 2. In addition, a uniform
data set with one-half the bandwidth (SW ) 2 kHz) was formed
by every second t1 sample of the full data set.

The number of data points, iNUS < 128, distinguishes each NUS
data set. Thus, the number of unsampled points on the time grid,
or missing data M, is given by M ) 128 - iNUS. We define critical
sampling as the case where the number of known dark frequency
points D equals the number of missing time data points M (D )
M). In the absence of noise, this number of dark points would
completely determine the spectrum. In contrast, in subcritical
sampling, the number of dark frequency points does not fully
replace the missing time data (D < M).

To test the reconstruction of data with a very high dynamic range,
or a baseline roll, or an aliased signal, 1D FIDs were synthesized
with the same bandwidths, and with 50 Hz-wide Gaussian signals
in the same region as in the F1 (15N) dimension of the experimental
data. The signal intensity was set arbitrarily unless otherwise noted.

Nonuniform Sampling Schedules. We use “on-grid” random
NUS in which a specified number of on-grid samples are chosen
quasi-randomly with a Gaussian probability density. To form the
on-grid samples, we first generated corresponding off-grid samples
using a program available at http://nmr700.chem.uw.edu.pl/.27 For
the Gaussian sampling probability density, exp(-t2/σ2), we chose
σ such that the sampling density is halved at the middle of the
interferogram and the sample with the longest t1 falls close to the
maximum evolution time t1max ) 32 ms in our full data set.
Nonuniform samples with significantly larger or smaller σ values
lead to lower S/N or lower resolution, respectively, in the processed
spectrum.

To conform to the grid, we increase the evolution time of each
randomly generated point just enough to coincide with the first
unoccupied grid point. No sample is lost in this process. An example
of an on-grid random NUS schedule generated in this fashion is
shown in Figure 3 for 48 samples on our 128-point grid. The
probability density closely resembles the Gaussian distribution when
less than ∼60% of the time points are sampled. With more
sampling, the density tends to have a long flat region early in the

Figure 1. The SIFT cycle: alternating FFT (right) and inverse-FFT (left)
are interleaved with reinstatement of time data (top) and frequency
information (bottom).

Figure 2. The 15N HSQC spectrum of uniformly 15N-labeled GB1 derived
from the master data set with 128 linear t1 samples. The entire oversampled
15N (F1) dimension is included. The spectral region enclosed by the dashed
rectangle is expanded in Figure 6.

Figure 3. NUS pattern (bottom) and density (top) for iNUS ) 48. The density
was calculated using a four-point window.
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FID, and then drop relatively steeply, resembling the form 1/(1 +
[t/(atmax)]b) with a ) 0.6-2.0 and b ) 4-6, where the values of a
and b are greater for larger numbers of samples. Of course, the
distribution eventually becomes completely flat with a fully
occupied grid. Despite this transformation from sampling on a
continuum to sampling on a grid, the present NUS shares the
fundamental characteristic with any other common nonuniform
distribution of being progressively sparser toward the end of the
FID.

Estimation of the S/N. NUS sampling results in pseudonoise
that depends on the positions of missing time points and the
intensities that they would have if acquired. This is most readily
understood for one-dimensional data, although the behavior gen-
eralizes to multidimensional data.

For one-dimensional data, the discrete NUS FID, f0, is related
to the discrete master FID, f, by

where (1/σ) is the dwell time determined by the spectral bandwidth,
σ. The summation runs over the M missing time data points in the
NUS data set, and δnk is the Kronecker delta function. Because
sinc(z) ) 0 for integer z * 0 and sinc(0) ) 1, the sinc function
forms an orthogonal basis for a discrete FID, and we can rewrite
eq 1 in the continuous form:

The Fourier transform, F0, is then given by

where the first term is the spectrum that would be given by the full
data set, and Π(x) is the boxcar function (1 for |x| e 1 and 0
otherwise). The coherent oscillations in the second term of eq 3
represent the pseudonoise due to NUS. It is seen that the amplitude
of the component pseudonoise is determined by the time signal
intensity f(τk) that would be observed if it were acquired. Thus, in
a spectrum empty of signals, there should be no pseudonoise visible
above the thermal noise. More importantly, in a spectrum with high
dynamic range, the average pseudonoise level will be determined
primarily by the intensity of large peaks and will mask smaller
peaks.

The absence of pseudonoise in F1 slices empty of signals is
illustrated in Figure 4 where the pseudonoise appears as noise ridges
running parallel to the indirect (F1) axis. Because of this localized

nature of the pseudonoise, it is essential to select and register the
signal-containing slices to monitor the S/N during the SIFT cycle.
The noise level is conveniently measured in a region of interest by
the median of the absolute spectral heights taken at relatively small
number of (say 500) randomly selected points out of a reduced 2D
matrix consisting of a bundle of the F1 slices selected as above.
This works well because each slice in the multidimensional
spectrum is normally sparse.

Sample Preparation. E. coli BL21 (DE3) competent cells were
transformed by the T2Q GB1 plasmid (kindly provided by Angela
Gronenborn). Two milliliters of Luria-Bertani (LB) medium
containing 75 µg/mL carbenicillin were innoculated and grown at
37 °C for 6-8 h. A 25 µL aliquot of this culture was used to in-
noculate 10 mL of M9 minimal media containing 1 g/L 15NH4Cl
(Cambridge Isotope Laboratories) and 8 g/L natural abundance
glucose. After growth overnight at 37 °C, the 10 mL was transferred
into 1 L of M9 media of the same composition and grown at 37 °C
until the cell density reached an OD 600 of 0.8. Expression of GB1
was induced with 500 µM isopropyl B-D-thiogalactoside for 3-3.5
h. Cells were then sedimented at 5000g for 30 min. The cell pellet
was homogenized by tip sonication in phosphate buffered saline
(200 mM NaCl, 50 mM KH2PO4/K2HPO4, pH 7), heated to 80 °C
for 5 min, chilled on ice for 15 min, and centrifuged at 30 000g
for 30 min at 4 °C. The resulting supernatant was concentrated
using Amicon Ultra-15 3500 MWCO devices and purified at 4 °C
by gel filtration chromatography (Sephacryl S-100). Peak fractions
were pooled and reconcentrated with Amicon Ultra-15 3500
MWCO devices. The concentrated protein was then dialyzed three
times against 4 L of fresh 50 mM sodium phosphate buffer (pH
5.6).39 The final sample concentration was adjusted to approxi-
mately 1 mM.

NMR Measurements. The master 2D 1H-15N HSQC spectrum
was recorded at 278 K with a gradient-enhanced scheme40 at 591
MHz (1H Lamor frequency) using a home-built console and
software (D. Ruben) and a Z-SPEC 5 mm triple-resonance
IDTG590-5 probe (NALORAC Co., CA). Four scans were averaged
at the recycle delay of 2 s. The 15N bandwidth was 67 ppm (3984
Hz) sampled with 128 points, and the 1H bandwidth was 13.6 ppm
(8013 Hz) sampled with 1024 complex points. The total acquisition
time was 34 min.

Results and Discussion

SIFT Is Efficient and Faithful. As a worst-case example, we
demonstrate SIFT using only frequency dark points produced
by oversampling in the indirect dimension (Figure 2). The
bandwidth for the 15N (F1) dimension was 4 kHz, although the
minimum Nyquist bandwidth for the amides in the 15N HSQC
is 2 kHz. The populated region in the 15N dimension spans 60
frequency points between 101.2 and 132.0 ppm; that is, 68 dark
frequency points at the spectral edges are available for SIFT,
D ) 68.

Although we will use only the frequency dark points located
at the spectral edges, each F1 slice also has varying numbers
of dark points between peaks that can be used in spectral
processing whenever they are located either by thresholding or
by a scouting experiment.

Figure 5 illustrates the effect of SIFT cycles for a representa-
tive t1/F1 column at F2 ) 8.34 ppm. The top left panel in Figure
5 shows the progress of the S/N (solid lines) and the rmsd
between the restored and the original complete interferogram
along the indirect dimension (broken lines). Hereafter, we will
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Figure 4. The same spectral region as in Figure 2, but for NUS prior to
SIFT processing.

f0(n/σ) ) f(n/σ) - ∑
k)1

M
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f0(t) ) f(t) - ∑
k)1

M

f(τk) sinc(σ(t - τk)) (2)

F0(ω) ) F(ω) - 1
σ ∑

k)1
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refer to the interferogram for the indirect evolution as simply
the FID. The S/N and rmsd improve steeply in the early
iterations of the cycle and quickly settle. In general, the
convergence is slower, and the improvement in S/N and rmsd
is smaller for data sets with fewer samples. For example, for
the data sets with iNUS ) 64 (black lines) and 48 (gray lines),
the S/N leveled off at 19 SIFT cycles (∼6 s of computation)
and 42 SIFT cycles (∼12 s of computation), respectively. We
note that SIFT has been proven to converge,41 and there are no
parameters to tweak for avoiding local minima, etc. It is also
important to note that the progress in the S/N and the rmsd
occurs together. However, although the rmsd serves here as a
direct measure of the restoration of the master data set, such a
measure is not available in a de noVo application. On the other
hand, the S/N can be easily calculated at every cycle and used
as a criterion for terminating processing.

After the SIFT iterations, the SIFTed FID may be processed
in the usual manner, as if all of the time points had actually
been recorded. The middle and bottom rows of Figure 5 show
the representative F1 slice before and after SIFTing. The spectra
before SIFTing (left) show the untreated pseudonoise charac-
teristic of even random NUS; these spectra correspond to the
ones given by NU-FT.26 Close to or above the critical condition
(D JM, middle row of Figure 5), the noise level in the SIFTed
spectrum (middle right) is comparable to that of the full master
data set (top right). At the subcritical condition (D < M, bottom
row of Figure 5), the result is not as good, with greater residual
pseudonoise. However, despite the gradual increase in residual
pseudonoise with decreasing numbers of samples, neither
spurious peaks nor inaccurate peak shifts are obtained even at
deeply subcritical sampling.

Figure 6 compares a crowded portion of the master 2D
spectrum (top) with spectra based on half as many (middle row)
and one-quarter as many (bottom row) t1 points. The middle
column shows that SIFTed NUS data sets preserve the resolution
seen in the master spectrum, without reducing the spectral width,
even when 75% of data points are missing (iNUS ) 32). Figure
7 shows that SIFT sustains resolution with decreasing numbers
of t1 samples without sacrificing much S/N. The NUS data sets
are processed with either SIFT (O), NU-FT (2), or the iterative
thresholding (0). While the S/N in the spectra processed by
NU-FT (2) decreases steeply with the number of samples, due
to the untreated pseudonoise, the S/N in the spectra processed
by SIFT decreases much more slowly (O). This clearly illustrates
the power of the information carried by the dark frequency
points integrated into the time domain by SIFT.

The power of frequency information is also seen in comparing
the SIFT results with the results from uniform sampling with 4
kHz (solid gray line) and 2 kHz (dashed gray line) bandwidths,
where points are reduced by truncation (as for the spectra in
the left and right columns in Figure 6). We see that the S/N of
SIFT-processed spectra (O) decreases more slowly than that
obtained by uniform sampling. This translates into faster data
acquisition. For example, the S/N ratio of the SIFT-processed
spectrum with iNUS ) 64 is ∼70% higher than that with uniform
64 samples taken at the conventional 2 kHz bandwidth to
preserve resolution (broken gray line in Figure 7). Achieving a
70% increase in the S/N ratio would otherwise require (1.7)2 )
3 times as much signal averaging. Furthermore SIFT affords
this increased sensitivity without deteriorating the resolution or
tightening the bandwidth. Thus, with NUS and SIFT, there is
no reason to fold a spectrum and introduce potential complica-
tions in the spectral analysis, except in some solid-state
experiments with significant spinning side bands.

The 0’s in Figure 7 show that iterative thresholding can boost
the S/N of the processed spectrum beyond that realized by SIFT
because it can exploit the frequency dark points that exist
between peaks. Although iterative thresholding is thus an
attractive approach to data reconstruction, its downsides include
the difficulty of knowing in advance how sparse the NUS can
be and a greater chance of losing small signals during processing
(vide infra).

(41) Jorge, P.; Ferreira, S. G. IEEE Trans. Signal Process. 1994, 42, 2596–
2606.

Figure 5. The effect of SIFT cycles. At the top left, the signal-to-noise
ratio (-, left y-axis) and rmsd between the SIFTed NUS FID and the master
FID (- - -, right y-axis) are shown as a function of the number of SIFT
cycles. Black and gray lines plot results for data sets with iNUS ) 64 and
48, respectively, and arrows show the chosen termination points (19 cycles
for iNUS ) 64 and 42 cycles for iNUS ) 48). In the other panels, a
representative slice taken at F2 ) 8.34 ppm is shown for the master data
set (top right), unprocessed NUS data (middle and bottom, left), and SIFTed
data (middle and bottom, right).

Figure 6. A crowded region of the 2D spectra obtained with 128 (top
row), 64 (middle row), and 32 (bottom row) t1 points, distributed in uniform
(left and right) and nonuniform (middle) fashion. The iNUS ) 64 data were
processed with 15 SIFT cycles, and the iNUS ) 32 data were processed
with 25 SIFT cycles. All data sets were multiplied by a squared-sine
weighting function prior to Fourier transformation. The lowest contour line
corresponds to 10% of the tallest peak in each spectrum.
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An attractive feature of SIFT is its high fidelity in spectral
quantification. Figure 6 shows that the peak shifts are identical
to the true shifts under both critical and subcritical conditions,
within 0.013 ppm digital resolution in the 1H dimension and
0.065 ppm digital resolution in the 15N dimension. Figure 8
compares the peak intensities observed in uniformly and
nonuniformly sampled data. Close to the critical condition, the
intensities in the spectra processed by SIFT (O) and by iterative
thresholding (+) accurately match the “true” intensities observed
in the full uniformly sampled data set. At subcritical conditions,
the intensities in the SIFTed spectrum became less accurate in
the sense that they deviate from the diagonal reference line.
Nevertheless, the trend remains highly linear, indicating that
the relative peak intensities remain accurate. On the other hand,
iterative thresholding produces some serious outliers of the peak
intensities.

The fidelity of the SIFT-processing was tested further for a
higher dynamic range using synthetic 1D data. Figure 9a
demonstrates the exquisite accuracy and linearity of the SIFT-
processed peak intensities in a spectrum where signals vary over
2 orders of magnitude. This validates SIFT for NOESY-type
experiments.

When the dynamic range of the spectrum is high, iterative
thresholding has a greater chance than SIFT to lose a small
signal by assuming zero intensity for the frequency points below
a user-defined threshold. This is illustrated in Figure 9b-f.
Because the amplitudes of large signals determine the average
amplitude of the pseudonoise seen in the same slice (see

Methods), if one rationally sets the threshold above the
pseudonoise level (the dashed line at 40 in Figure 9c), it is
actually well above the amplitude of the smaller signals. As a
result, iterative thresholding loses the peak, as seen in Figure
9e, while SIFT, which uses only known dark points, suppresses
the pseudonoise without losing the small peak, as seen in Figure
9d. The faithful rendering of the small peak close to the noise
level illustrates the robustness of SIFT for noisy data. However,
iterative thresholding can profitably be used to further improve
a SIFT-processed spectrum. When the pseudonoise level has
been suppressed by prior treatment with SIFT, the threshold
can be reduced (the dashed line at 12 in Figure 9d). Figure 9f
shows the result of this two-step procedure, with SIFT followed
by thresholding, where the S/N ratio was significantly enhanced
while the small peaks are conserved. Thus, it is always advisable
to treat data with SIFT before thresholding.

The fidelity of SIFT also extends to spectra with signals of
different signs. Figure 10 shows the SIFT reconstruction of data
with aliased and nonaliased signals, where the former at ∼110
ppm is phase-inverted with respect to the latter. In the post-
SIFT spectrum (middle panel), one can see that the pseudonoise
is almost perfectly removed. Thus, SIFT is generally applicable
to data with peaks of positive and negative intensity, such as
may arise in experiments using constant time evolution.

We have also examined the processing of a uniformly
sampled short record, that is, a truncated data set. A number of
previous reports have been interested in extrapolation of a
truncated data for super-resolution. In such applications, slow
convergence has been noted as a major downside of the G-P
algorithm.36 We show here that NUS greatly accelerates the
convergence. In the Fourier transform of a truncated FID, the
pseudonoise manifests as Gibbs wiggles at the skirt of each peak.
Because the frequency dark points produced by oversampling
outside the bright region of the spectrum cannot treat this
localized noise, iterative thresholding was used for all of the
reconstruction shown in Figure 11. As shown at the upper left,
the S/N converged at 20 cycles for NUS (solid line) but only at
1000 cycles for the truncated data (dashed line). Slow conver-

Figure 7. Resolution (top) and S/N (bottom) observed in the spectra of
NUS data set processed by SIFT (O), NU-FT26 (2), and the iterative
thresholding (0), and of uniformly sampled data with the bandwidth of 4
(solid gray line) and 2 kHz (dashed gray line) at various number of t1
samples. The rightmost data point corresponds to the full master data set.
The error bars represent five repetitions of processing with different
randomly selected points for S/N evaluation (see Methods). The average
number of cycles used was: 1.0, 5.0, 10.2, 15.2, 25.4, 25.4, 7.4, and 1.0 for
SIFT, and 1.7, 2.0, 5.8, 9.4, 21.0, 78.4, 67.0, and 59.6 for iterative
thresholding, on data sets with iNUS ) 112, 96, 80, 64, 48, 32, 24, and 16,
respectively. The number of useful cycles is maximal for moderate size
data sets. For large data sets, few cycles are needed to get good spectra.
For small data sets, cycling offers less gain.

Figure 8. Comparison of peak intensities observed in the master (abscissa)
and nonuniformly sampled (ordinate) data sets. The data sets with iNUS )
64 (top) and iNUS ) 32 (bottom) were restored by SIFT (O) or iterative
thresholding (+).
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gence for a data set with long stretches of contiguous missing
data points has been noted previously.41 Furthermore, our
patience is not well rewarded. In addition to slower convergence,
the truncated data (Figure 11, bottom right) yield noticeably
distorted peak shapes: broader lines and remaining wiggles. On
the other hand, the NUS data set yields a nearly perfect result
(Figure 11, bottom left). Therefore, NUS is always preferable
to zero-filling a truncated uniform record.

SIFT Is Tolerant and Candid. SIFT is not only efficient and
faithful but also robust against experimental artifacts and user
errors. In Figure 12, one can see by comparing the left and right
middle panels (lower trace) that a baseline roll coexisting with
a signal does not compromise pseudonoise removal by SIFT.
This is because the SIFT process is linear, just like the Fourier
transform; that is, SIFT treats each signal component indepen-
dently. Data with a signal and baseline roll can be understood
as a superposition of two components: a very short FID decaying
to zero in the initial several time points, and a much longer one
for the signal. Because of the linearity of SIFT, restoration of
the signal is independent of the baseline roll. More actively,
one could use SIFT to correct the baseline roll by removing
the two offending time data points and letting SIFT fill them in
from the frequency domain information. As shown by the upper
trace in the middle right panel of Figure 12, the baseline roll is

removed by SIFT, along with the pseudonoise. This approach
is also suitable for restoring other corrupted time data points
due, for example, to RF-arcing.

Although there are no adjustable parameters in SIFT, one
possible source of user-dependent error is the mistaken speci-
fication of dark frequency points. While the contiguous dark
points at the spectral edges used in the current examples are
easy to locate, aggressive use of dark points elsewhere requires
more care. To test the behavior of SIFT when mistaken
frequency zeroes are applied, we deliberately specified an
excessively broad dark region on the low field side of our test
spectrum. The results for two F1 slices, each with two peaks,
are shown on the left and right sides of Figure 13. The arrows
show the boundaries of the dark edges in the mistaken SIFT
(third row) and the correct SIFT (fourth row). We see that the
effects of the mistake are limited and diagnostic. Of the four
peaks, only the one that has been incorrectly assigned to the
dark region does not gain intensity with SIFT processing. Also,
of the two slices, only the one in which a peak was incorrectly
suppressed remains noisy. Thus, the independence of SIFT
processing for each signal generates tell-tale signs that can be
used to locate mistaken assignments of darkness. Furthermore,

Figure 9. Reconstruction of synthetic 1D data with high dynamic range. (a) Double-log plot of the normalized peak intensities observed in the transform
of the full data (b) and SIFT-processed NUS data (iNUS ) 64) (d). Also shown are the transforms of NUS data (c), NUS data restored by the iterative
thresholding (e), or by SIFT followed by thresholding (f). In the insets of (b), (d), (e), and (f), the region between 118 and 150 ppm is vertically expanded
by a factor of 10. The full data contain peaks at 106.9, 125.0, 120.8, 118.2, and 129.3 ppm, whose relative intensity is set to 100, 75, 20, 2.0, and 1.0,
respectively. A threshold at 40 and 12, shown by a dashed line in (c) and (d), was used to yield the spectra in (e) and (f), respectively. The number of SIFT
and thresholding cycles was 10 and 50, respectively, for the spectra in (d), (e), and (f).

4654 J. AM. CHEM. SOC. 9 VOL. 131, NO. 13, 2009

A R T I C L E S Matsuki et al.



it is always easy to modify the assignment and rerun SIFT
because the processing is so fast.

Conclusion

We have shown that a Gerchberg-Papoulis type algorithm
can be used to integrate frequency and time information in
multidimensional NMR experiments with great fidelity and

efficiency. Unambiguous frequency domain information is
available in the form of known dark points. Using them to
effectively replace time points, SIFT processing of NUS data
can simultaneously achieve significantly higher S/N, resolution,
and spectral width than is possible via uniform sampling with

Figure 10. Reconstruction of synthetic 1D data with negative and positive
signals. The panels show, from the top to the bottom, the transform of the
full data set, and the post- and pre-SIFT NUS data (iNUS ) 64). The phase-
inverted peak at ∼110 ppm is due to the spectral aliasing, the initial sampling
delay equal to one-half the dwell time, and an appropriate phase correction
to yield absorption signals (as happens for a real case). The number of
SIFT cycles is 10.

Figure 11. Comparison of iterative thresholding results for a 48-point NUS
data set and a 48-point uniformly sampled short record. The top left panel
shows the S/N along the iteration for NUS data (-) and truncated uniformly
sampled data (- - -). Arrows indicate the points of cycle termination.
The computation took 6 s for the NUS data and 5 min for the truncated
data. The other panels show a slice taken at F2 ) 8.34 ppm from the
spectrum of the full master data set (top right), the processed NUS data
(bottom left), and processed truncated data (bottom right).

Figure 12. Reconstruction of synthetic 1D data with (right column) and
without (left column) a baseline roll. The baseline roll was manufactured
by intentionally corrupting the initial two time data points (by setting them
to zero). The panels in each column show, from the top to the bottom, the
transform of the full data, and post- and pre-SIFT NUS data (iNUS ) 64).
In the middle right panel, the upper trace is a result of SIFT restoring the
two corrupted initial time data points, as well as the missing points due to
NUS. The number of SIFT cycles was 100 for the upper trace, and 10
otherwise. The black and gray traces refer to the left and right y-axes,
respectively.

Figure 13. Two representative slices taken at F2 ) 7.65 (left) and 8.54
(right) ppm from a SIFT-processed spectrum with iNUS ) 64. The panels in
each column show, from the top to the bottom, the slice taken from the full
master data set, the NUS data set before SIFT, the NUS data set after
mistaken SIFT, and the NUS data set after correct SIFT. Arrows indicate
the boundaries of the dark region. For the mistaken SIFT, the dark region
was deliberately mis-specified to include 128 ppm.
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the same number of data points. The SIFT cycles converge
quickly, and the results are model-free and robust.

SIFT is also a useful precursor to thresholding. Thresholding
can provide access to more dark points than can be readily
identified in advance. Yet it also has the potential to mistake
weak points for zeroes. The reduced noise realized by processing
first with SIFT enables thresholding with a lower and less
dangerous threshold.

The sensitivity (or equivalently time) gain illustrated here with
2D examples is generalizable to higher dimensions, and the
benefits will be multiplicative. For example, if SIFT enables a
3-fold reduction in the number of samples in each indirect
dimension of a 3D experiment, the overall sampling requirement

is reduced by a factor of 9. An application of SIFT to a 3D
NUS data set is currently underway and will be reported in a
forthcoming publication.
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